GCSE Mathematics (Higher)
Easter Revision Course Dates 2024
- Week 1: Monday 25 March – Friday 29 March
- Week 2: Monday 1 April – Friday 5 April
- Week 3: Monday 8 April – Friday 12 April
Boards
Suitable for all exam boards.
Length of Course
Five half day sessions, 20 hours total.
Times
9.00am to 12.30pm or 1.00pm to 4.30pm daily.
The emphasis given to each topic will vary according to the strengths and weaknesses of the students in the groups and the syllabuses for which they have been taught. It is therefore important that students give as much detail as possible on the questionnaire about their syllabus and any specific areas of difficulty.
Number:
Basic arithmetic; use of calculators; fractions and percentages; ratio; estimation and appropriate degree of accuracy; possible effect of errors on calculation; trial and improvement methods; standard form; evaluating formulae (including examples with negative and fractional numbers).
Algebra:
Sequences and number patterns; symbolic notation; expressing general laws in symbolic form; manipulation of formulae; factorising; convergence and divergence of series; powers and roots; direct and inverse proportion; solving simple equations and inequalities; simultaneous equations; quadratic equations; trial and improvement for polynomial equations; growth and decay rates; mappings; graphs of functions and inequalities; y = mx + c; graphical solution of equations; sketching and comparing graphs of functions; drawing a tangent to find gradient; estimating area under a graph.
Shape and Space:
Drawing and measurement; 2-D representation of 3-D objects; angles; symmetry; similarity; bearings; 3-Dimensional coordinates; plane and solid figures; areas and volumes; arc length and sector area; congruent triangles; similar solids; vector addition and subtraction; transformations (including combined and inverse transformations and matrix representation); loci; networks; Pythagoras’ theorem; sine; cosine; and tangent of any angle (including 3-D problems); graphs of trigonometrical functions; sine and cosine rules.
Handling Data:
Design and use of an observation sheet/ questionnaire; sampling; statistical diagrams including histograms; scatter diagrams and the idea of correlation; probability (estimating probabilities, independent and mutually exclusive events); mean, median and mode; frequency polygons and cumulative frequency diagrams; upper and lower quartiles; tree diagrams; flow diagrams; dispersion and standard deviation; the normal distribution; critical path analysis diagrams.
Discover more at MPW
Success Stories
In their own words - testimonials from our past students and their parents.
Inspection Reports
MPW Birmingham was judged as Outstanding in all areas by Ofsted.